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Abstract— Design for low power testing is a primary concern in modern circuits. In this paper a novel test pattern generator (TPG) is proposed which is 
more suitable for memory built in self test (BIST) architecture, used for testing of circuits. The objective of the BIST is to reduce power consumption dur-
ing testing of circuits. The proposed memory BIST requires test pattern generator, Device under test (DUT) output measurement sensor and Artificial 
Neural Network (ANN). Design approach hinges on the ability to meet strict area and power constrains of the circuits. In this work, we design a high 
efficient test pattern generator using an unsupervised leaning Artificial Neural Network(ANN) .High precision RAM storage of weighted coefficients during 
operation or standby ,using this platform we design an HEBBIAN learning algorithm and it is used to train  Artificial Neural Network(ANN) ,which  gener-
ate BIST with high fault coverage and low overhead. 

 

Index Terms—Memory BIST, ANN, DUT, HEBBIAN learning.  

——————————      —————————— 

1 INTRODUCTION                                                                    
An  integrate on-chip dedicated circuitry for deciding pass/fail 

based on simple on-chip measurements to achieve a Memory Bulid in 
self test solution that can be used for low-cost production test as well 
as in-field periodic test. This dedicated circuitry comes in the form of 
a neural classifier, which is configured and trained after production to 
effectively distinguish compliant from non-compliant functionality in 
the low-cost measurement multi-dimensional space. To investigate 
this approach, it is designed and fabricated an integrated circuit which 
serves as a neural network platform. This platform allows us to 
experiment with various neural classifier topologies and training 
algorithms. Thereby, it is demonstrate not only the ability of an on-
chip neural classifier to accurately produce pass/fail labels in silicon, 
but also the technology and implementation details that make this 
approach suitable for on-die integration for fully stand-alone BIST 
purposes. 

 
In this work, we propose to integrate on-chip dedicated circuitry 

for deciding pass/fail based on simple on-chip measurementsto 
achieve a fully stand-alone analog/RF BIST solution that can be used 
for low-cost production test as well as in-field periodic test. This 
dedicated circuitry comes in the form of a neural classifier, which is 
configured and trained after production to effectively distinguish 
compliant from non-compliant functionality in the low-cost 
measurement multi-dimensional space. To investigate this approach, 
we have designed and fabricated an integrated circuit which serves as 
a neural network platform. This platform allows us to experiment 
with various neural classifier topologies  

 

 
Fig 1. Basic Block Diagram of Memory BIST 

 
In this work, we propose to integrate on-chip dedicated 

circuitry for deciding pass/fail based on simple on-chip meas-
urements to achieve a memory BIST  shown in Fig 1  that can 
be used for low-cost production test as well as in-field periodic 
test. This dedicated circuitry comes in the form of a neural 
classifier, which is configured and trained after production to 
effectively distinguish compliant from non-compliant func-
tionality in the low-cost measurement multi-dimensional 
space. To investigate this approach, we have designed and 
fabricated an integrated circuit which serves as a neural net-
work platform. This platform allows us to experiment with 
various neural classifier topologies and training algorithms 
[6]. Thereby, we can demonstrate not only the ability of an on-
chip neural classifier to accurately produce pass/fail labels in 
silicon, but also the technology and implementation details 
that make this approach suitable for on-die integration for 
fully stand-alone BIST purposes. 
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The proposed analog/RF BIST architecture, shown in Figure1, 
was designed, along with our first neural network experimentation 
chip. That chip served as proof of-concept that we can adequately 
learn how to separate passing and failing populations in silicon, and 
its effectivenesswas demonstrated on synthetic test data from a simple 
Low Noise Amplifier (LNA). Furthermore, it was a mixed-signal 
implementation with volatile SRAMs serving as the storage 
mechanism for holding the learned synapse weights of the neural 
network. As such, neural classifiers based on this technology would 
be rather bulky for on-die integration and would require an on-chip 
EEPROM for holding the synapse weights to support long-term in-
field test.  

 

2 OVERVIEW OF DESIGN  
The block diagram of our ANN is presented in Figure 2. 

The core of the design is a 30_20 array of synapses (S); each 
row is locally connected to a corresponding neuron (N). Glob-
al connectivity is programmable by means of multiplexors 
inserted between rows. This allows the core to be configured 
into several learning structures, including a  multilayer per-
ceptron [6] and an ontogenic neural network [9]. The former is 
a three-layer network of fixed topology with programmable 
number of neurons in each layer. In contrast, the ontogenic 
configuration allows for the network topology to be learned 
dynamically in parallel to its weights. The information pro-
cessing inside the core is analog; the signals and weights are 
represented by balanced differential currents. The current sig-
nal domain and the translinear principle offer a wide variety 
of mathematical functions, including multiplication and tanh-
like transformation [10], whereas the differential coding al-
lows for four-quadrant multiplication.  

 
A single weight value requires two current sources for  dif-

ferential current storage. It appears that the overall learning 
ability depends – to a great extent – on the “quality” of these 
sources. The ideal implementation should have the following 
characteristics: high precision, non-volatile storage  and fast 
bidirectional update. To this end, we designed a novel current 
storage cell (CSC) featuring two modes of weight storage: dy-
namic, for rapid bidirectional update, and non-volatile, for 
long-term storage of learned weights. The dynamic mode is 
engaged during training, when the weight values undergo 
multiple changes. Once the best set of weights is found, their 
values are copied onto the floating gate transistors for perma-
nent storage. Surrounding the core are the peripheral circuits 
providing support for fast programming,  on figuration stor-
age, and interfacing with the external world. In particular, the 
“DVI” blocks convert voltage-encoded input signals into bal-
anced differential currents required by the core. Not only does 
it simplify the interface with the off-chip stimuli  generator, 
but it also allows a direct connection of on-chip sensors with 
voltage output. The row and column controls isolate individu-
al CSC cells from the array for weight programming. Finally, 
the circuits at the bottom facilitate network training by trans-
ferring some of the programming related tasks on-chip. In 
particular, a digitally-controlled current source IDAC” gener-
ates target currents for dynamic programming of the CSC.  

 
 
Fig 2 System architecture 
 

Both the “IV” and the “DIV” blocks convert the output cur-
rent supplied by the core into voltage, which is captured by an 
off-chip ADC. For high accuracy we use the single-ended cur-
rent to  voltage converter “IV”, which is necessary for floating-
gate transistor (FGT) programming. This block constitutes a 
part of a fast current  measurement system; the current values 
are derived from the measured voltages using characterization 
data of the converter. The “DIV” block converts differential 
currents produced by the network output into differential 
voltages. Although less accurate, this is useful for quick net-
work output evaluation in run mode. During training, howev-
er, accurate estimation of the error between the network out-
put and the target value is necessary, which can only be  fur-
nished by the “IV” converter.  

 
One of the simplest learning method of synaptic weight 
change is hebbian learning, in which two cells fires simultane-
ously ( Have strong response). Their connections strength or 
weights increases, where the weight increases between two 
neurons is proportional to the frequency at which they fire 
together. Since weights are adjusted according to the correla-
tion of neural inputs 
 
            ΔWij (t) = γ*xj*xi                     (1) 

 

A general equation of a hebbian learning rule is 
 
     ΔWij (t) = F(xj, xi, γ, t, θ)     (2) 
 
in which time period  and learning node thresholds can be 
taken into account. 
 
𝑤𝑤𝑤 = 𝛾 ∑ 𝑦𝑖𝑝𝑦𝑗𝑝𝑝                            (3) 
 
2.1 Storage Cell 
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The circuit of current storage cell is illustrated in Fig. 3. We use 
a numerous input FG transistor (FGT) CP1 to store the incoming 
drain current Iw representing one of the weight value components. 
The drain current is modulated by the voltage on the FG  node, 
which is itself determined by the FG node charge and the voltages 
on two control gates. The global voltage vgate1 of the first control 
gate is shared among all FGTs, while vgate2 is stored locally in the 
dynamic sample-and-hold (S/H) circuit which consists of the switch 
transistor Q3 and the MOS capacitor CP3. The low-coupling 
capacitor CP2 makes Iw much less sensitive to charge leakage and 
other parasitic effects of the sample-and-hold circuit. The tunneling 
capacitor CP4 is implemented as a minimum size PMOS transistor 
with its source, drain and well terminals connected to vtun. The 
details of non-volatile and dynamic programming are described in 
[7].  

 
 

Fig 3 Current Storage Cell 
 

We selected two mechanisms for non-volatile programming of 
FGTs. Hot-electron injection is used to add  electrons to the FG, thus, 
lowering its voltage and increasing the drain current. Conversely, 
Fowler-Nordheim (FN) tunneling is used to remove electrons from 
the FG. Although the two mechanisms allow for bidirectional charge 
transfer,  ue to the difficulties in on-chip routing of high voltages and 
poor controllability we use FN tunneling for global erase. Injection, 
on the other hand, is used to program individual FGTs to a target 
current with high accuracy. First, the FGT of interest is isolated from 
the containing circuitry by raising the global vcasp and connecting its 
drain to the bit line. Next, we ramp up the a vdd and apply a series of 
short pulses to the bit line, measuring the drain current with the “IV” 
circuit after each pulse. The amount of charge injected during each 
pulse depends on both the source to-drain voltage and the duration of 
the pulse. For accurate injection we adopt the algorithm described in 
[11], however,using a pulse-width instead of a drain voltage 
modulation. 
 
2.2 Synapse Circuit 

The synapse circuit, illustrated in Figure 4, implements a four-
quadrant multiplication function [12]. The circuit features two CSC 
cells for  differential weight components storage and a six-transistor 
core, enclosed by the dashed box.  Provided the core transistors are 
identical and there is no mismatch, the output differential and com-
mon mode currents are obtained by 
 

𝐼𝑜𝑢𝑡+ + 𝐼𝑜𝑢𝑡− = 𝐼𝑖𝑛
+ −𝐼𝑖𝑛

−

𝐼𝑖𝑛
+ +𝐼𝑖𝑛

−  (𝐼𝑤+ − 𝐼𝑤−)                   (4) 

  
𝐼𝑜𝑢𝑡+ + 𝐼𝑜𝑢𝑡− =  𝐼𝑤+ + 𝐼𝑤− 

 
where in are the differential components of the input signal and are 
the differential components of the weight value. The core results in a 
very compact layout, while most of the area is occupied by the CSC 
cells due to the dynamic capacitors. 
 
 
 
Fig 4 Synapse circuit 

 

2.3 Neural Network 
Neural networks have an appealing silicon implementation. Syn-

apses and computational elements can be densely interconnected to 
achieve high parallel distributed processing ability, which enables 
them to successfully solve complex cognitive tasks. Neural networks 
also provide a high percent of healthy, strong and fault tolerance 
since they comprise numerous nodes that are locally connected, dis-
tributing knowledge among the numerous synapses. Thus, intuitive-
ly, damage to a few nodes does not impair performance. We are in-
terested primarily in analog implementations of neural networks as, 
in comparison to a digital implementation, they have superior time 
response and computational density in terms of silicon mm2 per op-
erations per second and, in addition, they consume extremely low 
power. 

 
In designing an analog neural network one has to consider a 

number of important factors. Appropriate connectionist topologies, 
training algorithms, long-term weight storage are among the most 
crucial. Furthermore, one has to consider implications of the tech-
nology in which a network is to be implemented. Digital CMOS 
processes, which are becoming more popular for analog/RF circuits, 
are plagued by process variation, mismatch, noise, environmental 
factors, etc.  The nodes present in the neural network will be giving 
the each information of the dut , which is given to the neural net-
work. 
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fig 5 neuron circuit 
 
the main function of a neuron circuit is to convert the sum of dif-

ferential currents from its synapses into a differential voltage. two 
issues need to be taken into account when designing this circuit. then 
if the output voltage is passed to the next node, it should be compati-
ble with the input requirements of the synapses, i.e. it should have 
high common mode. second, the circuit should handle relatively 
large dynamic range of input currents. while the useful information is 
contained in the difference, the common mode current may vary 
significantly depending on the number of connected synapses, as 
well as on their weight values. in our design, the common mode cur-
rent ranges from 90 na to 30 μa. a circuit satisfying these require-
ments is shown in fig. 5.  

 
the central part of the circuit is responsible for common mode 

cancellation by subtracting the input currents from each other and 
producing a positive difference. the output currents of the transistors 
n0 and n7 can be expressed as max (0,(𝐼𝑖𝑛− -𝐼𝑖𝑛+ ))  and max (0,(𝐼𝑖𝑛+ -
𝐼𝑖𝑛− ))  respectively. thus, only one of the transistors can sink non-zero 
current at a time. the second stage is a simple current-to-voltage con-
verter composed of two p-channel mosfets. it can be shown that, 
when the transistors are identical, such circuit exhibits a linear to the 
first degree characteristic of the following form 
 
                     𝑉 = 𝑉𝑑𝑑 −  𝐼

2𝐾𝑝(𝑉𝑑𝑑− 2𝑉𝑇𝑃)
                  (2) 

 
where kp is the transconductance coefficient, vtp is the 
threshold voltage, and vdd is the supply voltage. the circuit also pro-
vides a limiting function when the input current exceeds the internal 
current flowing through the circuit, thus introducing nonlinearity to 
the neuron characteristic. notice from the formula above that the 
slope of the characteristic depends on the kp , which is set at the 
design stage by specifying transistor sizes. finally, the output of the 
converter is shifted upwards to meet the requirements of the 
high common mode input voltage for the synapses in the fol-
lowing layer. this level shifter is a simple source follower cir-
cuit where the amount of shift is controlled by vbias. a shift of 
1v is used in this design. fig. 8 shows the simulated transfer 
characteristic of the entire circuit and represents the  activation 
function of the neuron 

3 NEURAL NETWORK TRAINING 

Hebbian learning algorithm is a general ethic that states 
that when two neurons are 'simultaneously' active then the 
synaptic efficacy between two neurons will be increase, and 
decrease if not. [12] defines a neural motivated learning algo-
rithm appropriate for the spike response model. In this paper, 
the learning algorithm was using to simplify it , but maintain 
the following qualities: Two neurons are 'positively coordi-
nate' if the pre-synaptic neuron spikes before the post-synaptic 
neuron. If any change in the weightage either increased or 
decreased will be computed using the spike time and the dif-
ference will be correlated using the neural network train-
ing.The differences of two neurons are negatively coordinate if 
the pre-synaptic neuron spikes after the post-synaptic neuron, 
excepting for a few brief milliseconds around the when both 
neurons spike at exactly the same instant. The weight is de-
creased for negatively correlated spike times. The weights are 
not allowed to grow or shrink without bound. An upper 
bound and lower bound are determined heuristically. A 'win-
dow' of time around the 'equal correlation point' is analyzed. 
In the cortex or the hippocampus, the learning window prob-
ably has a width of 50 - 200ms [12]. A 100ms window was im-
plemented in this project (50ms on either side of the 'equal 
correlation point is accounted for). This window corresponds 
to the time period over which chemical activity in real neurons 
takes place to change synaptic efficacy. The learning rule is 
executed at intervals of time greater than or equal to the 'win-
dow' size. A 100ms interval was chosen as the default for this 
project, which is the smallest usable value (accounting for all 
spike activity).The learning rule is the same for both the py-
ramidal cell and the inhibitory neuron, although this may not 
be true for real neurons. 

 

 

 

 

 

 

Fig 6 Training Node 

Fig 7  Hebbian Learning Principle 
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4 DEVICE UNDER TEST  
The Device under test used here is an 8 bit multiplier  which fol-

lows booth’s algorithm. Booth's multiplication algorithm is 
a multiplication algorithm that multiplies two signed binary numbers 
in two's complement notation. Booth's algorithm examines adjacent 
pairs of bits of the N-bit multiplier Y in signed two's comple-
ment representation, including an implicit bit below the least signifi-
cant bit, y-1 = 0. For each bit yi , for i running from 0 to N-1, the 
bits yi and yi-1 are considered. Where these two bits are equal, the 
product accumulator P is left unchanged. Where yi = 0 and yi-1 = 1, 
the multiplicand times 2i is added to P; and where y i = 1 and y i-1 = 0, 
the multiplicand times 2i is subtracted from P. The final value of P is 
the signed product. 

The representation of the multiplicand and product are not speci-
fied; typically, these are both also in two's complement representa-
tion, like the multiplier, but any number system that supports addi-
tion and subtraction will work as well. As stated here, the order of 
the steps is not determined. Typically, it proceeds from LSB to MSB, 
starting at i = 0; the multiplication by 2i is then typically replaced by 
incremental shifting of the P accumulator to the right between steps; 
low bits can be shifted out, and subsequent additions and subtrac-
tions can then be done just on the highest N bits of P. There are 
many variations and optimizations on these details. The algorithm is 
often described as converting strings of 1's in the multiplier to a 
high-order +1 and a low-order –1 at the ends of the string. When a 
string runs through the MSB, there is no high-order +1, and the net 
effect is interpretation as a negative of the appropriate value. Sup-
pose we multiply a*b where x is multiplicand and y is multiplier.  
The key to Booth’s insight is to divide the groups bit of multiplier 
into 3 parts: the beginning, the middle, or the end of a run of 1s.  
More specific, the table1 explains in detail 

TABLE 1. 
Booth Multiplication Operation 

𝑦𝑖 𝑦𝑖−1 Operation 

0 0 Do nothing 

0 1 Add x 

1 0 Subtract x 

1 1 Do nothing 

5 EVALUATION  
The BIST designed here is trained by hebbian learning 

principle. The errors are manually inserted in to the DUT. 
These errors are found using BIST which was designed. The 
Altera Quartus II design software provides a complete, multi-
platform design environment that easily adapts to your specif-
ic design needs. It is a comprehensive environment for system-

on-a-programmable-chip (SOPC)  design. The Quartus II 
software includes solutions for all phases of FPGA and CPLD 
design. 

  
 
Fig 8. DUT  output with error 
 
The above Fig 8 shows the simulation result of error in the 
booth multiplier.The Neural Network is trained along with 
DUT to define the rich test vectors with the help of memory 
BIST. This faults in the DUT is located  with these test vectors 
from Neural Networks. The graph shows the analysis of fault 
detection using trained neural network. Fig 9 shows the syn-
apse weighted storage data for 100 inputs which is trained to 
neural network to find rich test vector and Fig 10 true and 
faulty outputs. Like this we can train N- no. of input test cetors 
and rich test vectors are stored in ROM. 

 
Fig. 9 Original and synthetic devices shown together. One hun-
dred ofsynthetic devices comprise the validation set 
 

 
 
 
 

Fig. 10. Original data set consisting of 100 devices generated 
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Fig 11  DUT output without error 
 

The above Fig 11 shows the simulation result of error-free 
booth multiplier. Using this tool the power dissipation of the 
circuit is found. The total power dissipation is 74.36mW with 
dynamic power dissipation and static power dissipation is 
6.62mW and 46.14mW.   

 

6 CONCLUSION   
The memory BIST design with artificial neural network using 

floating gate technology is used in used in neural classifier.  The 
design of memory BIST  with neural networks takes to realization.  
With  this design it is capable  to produce an pattern 
reconfigurable of an memory BIST. The DUT is tested by using 
training data set produced by the BIST which is able to produce 
pass/fail during the testing. In the point of improvement using 
neural network which made the cost effective in the testing.  
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